

Developer’s Guide

RIM 950 Wireless Handheld™
Version 1.7

SDK User’s Guide

RIM 950 Wireless Handheld — SDK User's Guide, Version 1.7
Last revised 9/18/00

Part Number: PDF-03037-001

© 1997-2000, RESEARCH IN MOTION LIMITED

RIM, Research In Motion, the RIM logo, RIM 950 Wireless Handheld, RIM 957
Wireless Handheld, RIM 950, RIM 957 and RIM Wireless Handheld are trademarks
of Research In Motion Limited. Research In Motion and RIM are registered, U.S.
Patent and Trademark Office.

Complies with software O/S version 2.0 and applications version 1.7.

Visual C++ and Windows are trademarks of Microsoft Corporation. Intel is a
registered trademark of Intel Corporat thoion. Mobitex is a registered trademark of
Telia AB. DataTAC is a registered trademark of Motorola. All other brands, product
names, company names, trademarks, and service marks mentioned herein are
registered trademarks or trademarks of their respective holders.

Warning: This document is for the use of licensed users only. Any unauthorized
copying, distribution or disclosure of information is a violation of copyright laws.

While every effort has been made to ensure technical accuracy, information in this
document is subject to change without notice and does not represent a commitment
on the part of Research In Motion Limited.

Research In Motion Limited
295 Phillip Street
Waterloo, Ontario
Canada N2L 3W8
Tel. (519) 888-7465
Fax (519) 888-6906
Web site: www.rim.net
Email: info@rim.net

Printed In Canada JHM0700/sdk_uguide.doc

Contents
1. Introduction.. 5

About the SDK .. 5
About the network ... 6
About Research In Motion .. 6
About this guide ... 6

2. Installing the SDK .. 9
To install the SDK... 9
To configure Microsoft Developer Studio....................................... 11

3. Release notes.. 15
Recompiling your applications... 15
Message.. 15
OS.. 16
New simulator .. 16
Ribbon changes ... 16
Address Book changes... 17

4. Tools guide ... 19
RIM 950 Wireless Handheld simulator ... 19
Program loader ... 37
DLLUtil .. 47
Conversion utilities .. 47

5. An overview of the system .. 49
RIM co-operative scheduler .. 50
Tasks and threads... 50
Task yielding ... 50
MESSAGE concept ... 51
Memory use... 51
User interface .. 52
API overview .. 52

6. Building applications ... 55
Coding an application.. 55
Compiling RIM Wireless Handheld applications 63
Installing the application ... 64

Appendix .. 69
C library compatibility for RIM Wireless Handheld applications69

Index .. 75

1.Introduction
The RIM 950 Wireless Handheld Software Developer’s Kit (SDK)
includes all the tools needed to begin application development quickly.
The SDK provides an extremely powerful development environment
that utilizes Microsoft Developer Studio 5.0 or later (Visual C++ 5.0 or
later), supporting Windows 95 and Windows NT.

The RIM Wireless Handheld™ features a 32-bit Intel386™ processor
which executes the same instruction set as a Windows 95 computer. The
operating system provided with the wireless handheld is a multitasking
operating system with built-in messaging. You can write new
components for the wireless handheld without needing to rewrite entire
applications.

About the SDK
The SDK package includes:

• software

• application utilities

• PC-based simulator (herein referred to as the “RIM Wireless
Handheld simulator”)

If you have used a previous version of this SDK, you should read the
release notes section of this document (see page 15). The release notes
section describes changes required to make old applications run under
this version of the software. For example, it describes the new versioning
scheme and outlines compatibility requirements in new releases.

6 Introduction — About the network

Developer’s Guide – RIM 950 Wireless Handheld™

About the network
The RIM Wireless Handheld operates over the BellSouth Intelligent
Wireless NetworkSM in the United States and the Rogers™ AT&T®
wireless data network in Canada. Both networks offer broad coverage,
nationwide roaming, fast messaging, and reliable delivery. Even if your
RIM Wireless Handheld is turned off or temporarily out of coverage,
your messages will be stored and forwarded automatically when you
return to coverage.

About Research In Motion
Research In Motion (RIM) manufactures high performance radio
modems for use with the Mobitex network. These modems and other
Mobitex products manufactured by RIM are used on Mobitex networks
around the world.

RIM has an international reputation for developing high performance RF
technology in the narrowband PCS data communications industry.
RIM’s wireless technology has set new standards for battery life,
transceiver performance, physical size, ease-of-use, and price.

By helping companies design a broad range of wireless data products,
RIM has a detailed understanding of what end users and equipment
manufacturers need to use the Mobitex network effectively and
affordably.

The result of this close co-operation is a family of advanced wireless data
products that are easy to use and integrate quickly, including the RIM
902M™ OEM radio modem and the RIM 950 Wireless Handheld.

About this guide
These Developer’s Guides are meant to assist you in creating your
applications. This guide includes general information on the SDK itself.

Throughout this guide, the simulator will be referred to as the ‘RIM
Wireless Handheld simulator.’

 Introduction — About this guide 7

 Developer’s Guide – RIM 950 Wireless Handheld™

Some information is set apart typographically in the following ways:

Note

Notes provide additional information to help complete a task.

Tip

Tips offer an alternative method of performing an action

WARNING

Warnings follow any procedure or paragraph containing
instructions that, if followed improperly, could result in
damaging the RIM Wireless Handheld or software.

The names of program groups, icons, folders, windows, etc. will appear
in bold text. An example would be the Research In Motion program
group.

References to buttons have the hot key underlined where applicable. An
example would be the Next> button.

All programming elements such as returns, events, constants, structures,
parameters, etc. will appear in Courier New font. An example would be
the COMM_RX_ERROR error code.

2. Installing the SDK
In order to run the RIM 950 Wireless Handheld Software Developer’s
Kit, you need a PC capable of running Microsoft Developer Studio 5.0 (or
later). This chapter describes the process of installing the RIM 950
Wireless Handheld SDK and configuring Microsoft Developer Studio 5.0
(or later) to work with the SDK.

You can install and run the RIM 950 Wireless Handheld SDK in both
Windows 95 and Windows NT.

To install the SDK
1. Double-click on the installer icon.

2. The RIM Wireless Handheld simulator setup desktop will appear.
Follow the instructions on your screen throughout the setup process.

Software License Agreement window

10 Installing the SDK — To install the SDK

Developer’s Guide – RIM 950 Wireless Handheld™

Note

Please read the license agreement carefully. Proceeding with the
installation indicates that you agree with the conditions in the license
agreement.

3. When the Choose Destination Location window opens, a default
directory will be displayed. To change this directory, click the
Browse button, and the Choose Directory window will open. Select
the path, drive, and directory that you would like for your
destination. Click OK to return to the Choose Destination Location
window.

Choose Destination Location window

4. Once you have selected the destination directory, click Next> to
continue. The Select Program Folder window opens.

Select Program Folder window

 Installing the SDK — To configure Microsoft Developer Studio 11

 Developer’s Guide – RIM 950 Wireless Handheld™

5. Type in a folder name in which the setup items will be stored. The
default folder name is Research In Motion. Alternatively, you may
select a folder from the Existing Folders section.

6. At the end of the installation, an Installation Query window will
open to ask if you would like to view the README file.

7. A new window will open to display the Research In Motion
program group.

The RIM 950 Wireless Handheld SDK contains all of the tools and
information needed to build an application.

See page 55 for information on the process of building an application for
the RIM Wireless Handheld and the structure of an application. See
Chapter 3 – Tools Guide on page 19 for information on the tools used to
create a wireless handheld application and for a description of their
function and usage.

To configure Microsoft
Developer Studio
The RIM 950 Wireless Handheld SDK is designed to make use of the
libraries and features in Microsoft Developer Studio 5.0 (or later).
Handheld applications are built as a Windows DLL target, but they are
not used as Windows applications. The final DLL is stripped of
extraneous information and then ported into the RIM Wireless Handheld
operating system.

Because Windows sees the RIM Wireless Handheld applications as
DLLs, Developer Studio allows you to use nearly all development
facilities available for Windows, including using the Integrated
Development Environment, source level debugging, and breakpoints.
However, DLLs must not make calls to the Windows API, even when
running under Windows.

You must be familiar with Microsoft Developer Studio to develop
applications. You must purchase and become familiar with this
application separately from the RIM 950 Wireless Handheld Software
Developer’s Kit.

12 Installing the SDK — To configure Microsoft Developer Studio

Developer’s Guide – RIM 950 Wireless Handheld™

Follow these steps to configure the Microsoft Visual C++ 5.0 (or later)
environment for building RIM 950 Wireless Handheld applications.

1. Start the Microsoft Developer Studio and select File > New > Project
to create a new project.

• Give the project a name.

• Define the project type as WIN32.DLL.

Although the target is a Windows DLL, the RIM Wireless
Handheld application is not compatible with the Windows
operating system.

2. Select Project > Settings to set up the project parameters.

• Go to the Settings For: tab.

• Select All Configurations.

3. Go to the Debug tab.

• Set the executable for the Debug Session as OSLOADER.EXE.

• In the Program arguments field put a line in the form:

[OS DLL] [OS parameters] [application DLLs]

[OS DLL] should be OSPGRMB.DLL if you are simulating a
RIM 950 and OSHHMB.DLL if you are simulating a RIM
957™. (If you’re using OSLOADER.EXE, you don’t need to
specify a complete path because the program looks first in its
current directory.) [OS parameters] are any command line
switches you need to pass to the simulator.

• Finally, list all of the application DLLs at the end of the line,
making sure your application is the last one listed.

In order for the OSLOADER.EXE to find the DLLS, you must
either place the DLLs in your PATH or place them in the same
directory and use that directory as your working directory.

4. Go to the C/C++ tab.

• Set the Category to Preprocessor.

• Enter the paths for the SDK include files in the Additional
Include Directories field. These paths are to the

 Installing the SDK — To configure Microsoft Developer Studio 13

 Developer’s Guide – RIM 950 Wireless Handheld™

subdirectories \include and \include\internal of the RIM 950
Wireless Handheld SDK installation directory.

5. Change the Category to Code Generation.

• Set the Struct Member Alignment to 2 bytes. This will
minimize memory usage.

• Set the Processor to 80386.

6. Change the Category to C/C++ Language.

• Make sure that all check boxes are unchecked.

• The Enable Exception Handling checkbox should always be
unchecked.

7. Switch to the Link tab.

• Set the Category to General.

• At the end of the Object/Library Modules field, include the
files RIMOS.LIB, OSENTRY.OBJ, at the beginning, followed
by any .LIB files that are required (e.g. UI32.LIB,
ADDRESS.LIB, etc.). Place LIBC.LIB at the end.

• Check the checkbox Ignore all default libraries. Set the
Category to Input.

• Place the path to the subdirectory \lib of the RIM 950
Wireless Handheld SDK installation directory in the
Additional library path.

8. Save these settings.

9. Your setup is complete. Now you are ready to create your
application.

3.Release notes
This section describes some of the changes between versions 1.6 and 1.7
of the RIM 950 Wireless Handheld SDK. It describes changes you must
make to your existing code base before attempting to build applications
for RIM 950 Wireless Handheld 1.7.

WARNING The 1.7 environment is not binary compatible with 1.6. You
must recompile your code before running it on a 1.7 system.

RIM 950 Wireless Handheld 1.7 comes with a new operating system, a
new simulation environment and some new methods and classes. This
section lists the methods and functions that have changed for 1.7. You
should pay close attention to this list and modify your code if you used
the old forms.

Recompiling your applications
There is a new OS library, named RIMOS.LIB. Change the linker
settings for your development environment and replace the old OS
library (PAGER950.LIB) with RIMOS.LIB.

There are also a number of new methods and classes for 1.7. Check the
sections below for any code changes you might require. Be sure to
modify your code appropriately to match the new method signatures.

Message
The create_message() call has been modified. It was:

bool create_message (NetworkMessage * message = NULL)

It is now:

bool create_message (void)

16 Release notes — OS

Developer’s Guide – RIM 950 Wireless Handheld™

See the Message API Developer’s Guide for more information.

OS
Version 2.0 of the OS removes certain constants. The constants
LCD_WIDTH, LCD_HEIGHT, LCD_HEIGHT_BYTE, LCD_DISPLAY_SIZE, and
LCD_DISPLAY_SIZE_BYTE that were available but deprecated in
previous releases of the SDK are no longer available. The information
they provided should be obtained using the LcdGetConfig call (from
<LCD_API.H>). For quick recompiling, the header PRE20.H can be
included, which defines those values as function calls. This solution
should be avoided, however, since the overhead of the functions makes
the use of the values very inefficient.

New simulator
For RIM 950 Wireless Handheld 1.7, a new simulator replaces the
existing PAGER950 executable. To debug applications using the new
simulator, replace PAGER950.EXE in the Executable for debug session
field of the Debug tab in the project settings with OSLOADER.EXE. Use an
OS DLL (for example, OSPGRMB.DLL) to the Program arguments field as
the first argument. For more information on how to use the new
simulator, see the section titled “Device Simulator” in this guide.

Ribbon changes
The call RibbonSetApplicationString() now has an extra
parameter. If your application calls this function, you will get a link error
and will need to make a small code change.

The previous version of the call in the 1.5 SDK was defined in RIBBON.H
as:

void RibbonSetApplicationString(
const char * const appName,
const char * const string,
int priority);

 Release notes — Address Book changes 17

 Developer’s Guide – RIM 950 Wireless Handheld™

The new version of the call is defined as:

void RibbonSetApplicationString(
const char * const appName,
const char * const string,
int priority,
const BitMap * const bitMapPtr);

The bitMapPtr parameter is new, and refers to an optional image that
can be displayed instead of one of the characters of string. The string
has a normal maximum of five characters; if bitMapPtr is not NULL,
the maximum is four characters, because one character position is used
by the bitmap.

Address Book changes
Two functions have been added to notify the application of changes to
the Address Book’s data: register_address_book_update() registers
an application, and get_address_book_change_count() returns the
number of changes since the last reset.

The Address Book API now has a set of functions for dealing with group
addresses. A group address is an address name that represents a list of
other addresses. The new group addressing functions provide the
following features for dealing with group addresses:

• Determine if an address is a group address

• Get number of members

• Get information about members

• Get UIN from address handle

4.Tools guide
This section provides information on how to make use of the tools
provided in the SDK. These tools are provided:

• RIM Wireless Handheld simulator program
(SIMULATOR.EXE/OSLOADER.EXE), used to test programs on a
PC without loading them onto a wireless handheld

• Program Loader program (PROGRAMMER.EXE), used to load
programs onto the RIM Wireless Handheld

• Conversion utilities for creating fonts and bitmaps
(BMP2DEF.EXE, BITMAP.EXE, and LCDFONT.EXE)

• A utility (DLLUTIL.EXE) to display information about a RIM
Wireless Handheld application

This chapter describes configuration and use for each of these tools. We
assume you have a basic familiarity with Microsoft Developer Studio.

RIM 950 Wireless Handheld
simulator
The simulator allows you to test applications on the RIM Wireless
Handheld operating system without having to download the DLLs to the
wireless handheld itself. The simulator supports the full functionality of
the RIM Wireless Handheld itself, and can even be connected to a RAP
modem via the PC’s serial port, allowing the radio API to communicate
with the live Mobitex network.

Note

There are some differences between the RIM Wireless Handheld
device and the simulator. The simulator responds to certain
debugging calls, sending the output to the Visual Studio output pane;
those calls have no effect on the RIM Wireless Handheld.

20 Tools guide — RIM 950 Wireless Handheld simulator

Developer’s Guide – RIM 950 Wireless Handheld™

Running the simulator
There are two RIM Wireless Handheld simulator programs:
SIMULATOR.EXE AND OSLOADER.EXE.

They are launched in different ways

• SIMULATOR.EXE provides a Windows interface to the
OSLOADER.EXE program and is normally launched using
shortcuts.

• OSLOADER.EXE provides a command-line interface and is
normally launched using the command line.

For both simulators, you must load applications. Each DLL loaded into
the simulator environment is a separate application; which DLLs you
load depends upon which RIM 950 Wireless Handheld application you
want to simulate.

Run the simulator using shortcuts

The install process creates two icons in the RIM 950 Wireless Handheld
1.7 SDK program group – an SDK readme.txt icon and a Simulator icon.
Double-click the Simulator icon to start the simulator. The Simulator
window appears:

The Simulator Window

 Tools guide — RIM 950 Wireless Handheld simulator 21

 Developer’s Guide – RIM 950 Wireless Handheld™

1. First, select a simulation platform from the Options menu. The
Configure… item in the Options menu allows you to add new
simulation platforms or versions if you have them available as RIM
OS DLLs. The Configure… item also allows you to specify the path to
OSLOADER.EXE. Other than selecting a simulation platform, the
defaults should be appropriate.

2. When you are ready to start the simulation, choose Start Simulation
from the Control menu. You will be prompted for command line
switches for the OSLOADER.EXE program; see below for descriptions
of the possible switches.

3. After specifying the switches (if any), you will be prompted to load
Application DLLs via a file selector window. You can load more than
one file at a time by clicking Open after each file or by selecting more
than one file in the window and clicking Open.

4. Once all files have been loaded, click Cancel in this window; the
RIM Wireless Handheld simulator will start.

Running the simulator from the command line

You can also start the RIM Wireless Handheld simulator by running the
executable OSLOADER.EXE. (This executable is located in the SDK install
directory that you selected during the setup process.) The first parameter
to OSLOADER.EXE must be an OS DLL, such as OSPGRMB.DLL.

You can optionally load applications automatically by naming them after
the OS DLL on the command line, if the directory (or directories)
containing the DLLs is specified in the Windows PATH. For example:

OSLOADER.EXE [Switches] OsPgrMb.dll [applications]

If you don’t specify applications, you will be prompted with a file
selector window. You can load more than one file at a time by clicking
Open after each file or by selecting more than one file in the window and
clicking Open.

Once all files are loaded, click Cancel in this window; the simulator will
start.

Place the DLLs in your PATH or place them in the same directory and use
that directory as the current directory when you execute the command.

22 Tools guide — RIM 950 Wireless Handheld simulator

Developer’s Guide – RIM 950 Wireless Handheld™

The following table summarizes the command line switches and
arguments, in alphabetical order; these are explained in greater detail
later in this section.

Switches Description
/An Use n sectors of flash memory for OS and

application storage.

/Dn Use n sectors of flash memory for file
system data storage.

/E Erase flash allocation log.

/Fn Simulate n kilobytes of flash memory.

/Pf Force prompt for more applications.

/Ps Always suppress prompt for more
applications.

/Rn Use serial port n for RAP modem.

/RDIR=directory Store messages in directory.

/RSIM=addr Use addr as the simulator's address.

/Sn Use Windows serial port n in place of the
wireless handheld's physical serial port.

/T[flags] Set or suppress traps

Any argument that does not begin with / is taken as a file name, the
name of an application to be loaded.

Loading applications

Each DLL is a different application. The DLLs you load depend on which
RIM Wireless Handheld applications you want to simulate.

For example, a simple application that uses only the functionality of the
base API functions will not depend on other DLLs and can be loaded by
itself. However, applications built with the User Interface Engine require
loading the UI32.DLL file along with the UI-enabled application.

There is a restriction: Each DLL loaded in a group must require only the
DLLs selected before or listed in the current set. Therefore, the
application with the most dependencies should be added last. This

 Tools guide — RIM 950 Wireless Handheld simulator 23

 Developer’s Guide – RIM 950 Wireless Handheld™

restriction does not hold if the required DLLs are in your PATH or the
working directory that was used to start the simulator.

To simulate an application running with the full RIM Wireless Handheld
messaging application, load all of the DLLs in the directory. This should
be the following DLLs:

• ADDRESS.DLL

• AUTOTEXT.DLL

• COREAPI.DLL

• CRYPTOBLOCK.DLL

• DATABASE.DLL

• MESSAGE.DLL

• RIBBON.DLL

• TRANSPORT_MDP.DLL

• UI32.DLL

Please refer to the specific API documentation for each of these DLLs for
more information.

Note

Note that SDKRADIO.DLL is not a standard application DLL for the
simulator; it is used when you want to use your RIM Wireless
Handheld as a modem (see Using the RIM Wireless Handheld as the
modem on page 30). Normally you will not load SDKRADIO.DLL into
the simulator.

Using the simulator
When you run the simulator, a window featuring a picture of the
wireless handheld appears on your screen. This main window contains
pictures of a keypad, a trackwheel, and a LCD. You can operate the
keypad and trackwheel from Windows, and the LCD will show you
what would be displayed on the actual wireless handheld.

24 Tools guide — RIM 950 Wireless Handheld simulator

Developer’s Guide – RIM 950 Wireless Handheld™

The RIM Wireless Handheld simulator

Keypad

You can operate all keys on the simulator window’s keypad by clicking
them with the mouse. In addition, you can operate the keys on the RIM
Wireless Handheld keypad by using the corresponding keys on the PC
keyboard.

TheRIM Wireless Handheld simulator

ALT key

Alternate symbols for the keys (in red) can be accessed using the ALT key.
However, due to the special function assigned to the ALT key by

Keypad

LCD Trackwheel

BACKSPACE
key

SHIFT key

ALT key

 Tools guide — RIM 950 Wireless Handheld simulator 25

 Developer’s Guide – RIM 950 Wireless Handheld™

Windows, activate the wireless handheld's ALT key by pushing the CTRL
key on your PC.

The current state of the Alt key is displayed on the upper right corner of
the simulator. A reverse-video ‘A’ will be displayed when the ALT key is
in effect.

SHIFT key

Press and release the CAP or SHIFT key to capitalize the next key you
press. When this key is pressed, an up arrow will appear on the top right
corner of the screen.

PC mode and Pager mode

The keyboard can be toggled between two modes: PC mode and Pager
mode. In PC mode (the default), all symbols can be entered, and the
simulator internally generates the keystrokes required to produce each
symbol. In Pager mode, however, only the keys present on the wireless
handheld can be used.

The Keyboard menu

Enabling backlighting

To switch on the backlighting, press the ALT key three times successively;
the background of the LCD turns blue. The backlighting will stay on
until an idle period of about 10 seconds has been detected.

Trackwheel

The trackwheel has two functions: to be rolled, and to be used as a
pushbutton. You can operate the trackwheel using either the mouse or
the arrow keys on the keyboard

26 Tools guide — RIM 950 Wireless Handheld simulator

Developer’s Guide – RIM 950 Wireless Handheld™

Using the keyboard

The left and right arrow buttons on the PC keyboard simulate the
clicking of the trackwheel while the up and down arrow buttons
simulate the rolling.

Using the mouse

To perform the roller action using the mouse, click the trackwheel with
the left mouse button and drag vertically.

To click the trackwheel, depress the right mouse button. This action
allows the trackwheel to be rolled and clicked independently. In
addition, the simulator provides full support for the Microsoft
Intellimouse. You must first ensure that the correct Microsoft
Intellimouse drivers are installed. Using the Microsoft Intellimouse, the
mouse’s roller can be used to operate the wireless handheld’s
trackwheel. However, the Intellimouse roller only works when the
mouse pointer is over the RIM Wireless Handheld simulator.

Due to Windows filtering of events, sometimes trackwheel and right
mouse button clicks are not handled during, and immediately after
rotating the Intellimouse mouse wheel. This anomaly only occurs when
using the trackwheel on the Intellimouse.

LCD

The LCD size can be toggled between full size (with correct aspect
ratios), and actual size (how readable a display screen will be on the
actual hardware). To change the size of the LCD on your simulator,
select Display > Change size.

Simulation menu

The RIM Wireless Handheld simulator allows you to simulate the holster
environment as well as various battery conditions of the Wireless
Handheld. Under this menu, select the conditions you want to simulate.

 Tools guide — RIM 950 Wireless Handheld simulator 27

 Developer’s Guide – RIM 950 Wireless Handheld™

The Simulation menu

In the Radio Simulator Control panel dialog box, you can simulate
various coverage conditions.

Simulating serial I/O
The simulator has the ability to use one of the PC’s serial ports as the
RIM Wireless Handheld’s serial port. This option must be enabled via
the /S command line option when you start the simulator. If no /S
option is specified or the serial port is not available at startup, you
cannot open or use the serial port from the applications running on the
simulator.

When opening a serial port on the PC, the orientation of the serial port
on the PC is as it would normally be. Thus, if you wish to simulate a
connection between the RIM Wireless Handheld and the PC via the
provided serial port, you must connect the PC’s serial port to another
PC’s serial port via a null modem cable to communicate. If both your
simulator and your application connected to the RIM Wireless Handheld
are running on the same physical PC, they must be connected to
different physical serial ports on your PC and the serial ports must be
linked using a null modem cable.

Flash simulation files
In order to simulate the non-volatile nature of flash memory, the RIM
Wireless Handheld simulator loads the flash contents from a file on
startup and saves them back to the file on exit. The state of the simulated
flash is preserved in a file in the working directory named
OSXXXYY.DMP, where XXX is one of PGR (pager), HH (handheld), or OEM,
and YY is one of MB (Mobitex) or DT (DataTAC).

28 Tools guide — RIM 950 Wireless Handheld simulator

Developer’s Guide – RIM 950 Wireless Handheld™

When the RIM Wireless Handheld simulator starts, it determines the
simulated flash size. The size can be specified using the /F command
line option and the default size is 2048 KB. The simulator now checks to
see if there is a file named OSXXXYY.DMP (where XXXYY corresponds to
the current simulation platform) in the working directory. If the file
exists, its size must be less than or equal to the simulated flash size,
otherwise the simulator will report an error and abort. If the file does not
exist, the RIM Wireless Handheld simulator will create it, and its size
will be equal to the simulated flash size. Regardless of whether the DMP
file existed at startup, the RIM Wireless Handheld simulator will always
save the simulated flash contents on exit.

If the DMP file is smaller than the flash size, it will be extended with
0xFF’s up to the flash size. This will invalidate any flash allocation
information present in the file. This facility is provided for use with old
DMP files only and should be avoided in normal operation.

You must be careful in the design of your algorithms so as to minimize
the impact of the flash file system on their performance. The
performance of your algorithms will depend on the file system.
Therefore, you may have to alter your design so that it is compatible
with the RIM Wireless Handheld file system. More information is
available elsewhere in this guide.

Notes on older simulator versions

With older simulator versions, the flash file was named FILESYS.DMP.
If you wish to use an old flash file in the new version of the simulator,
simply rename it to the form OsXxxYy.dmp, and place it in the working
directory. Note that this is only guaranteed to work if the flash file is the
same size as the flash size for the simulator. If the file is larger than the
flash memory of the device, the simulator will warn you and not load the
file. If the file is smaller than the flash memory of the device, the
simulation may work correctly. If in doubt, erase the DMP file.

Also note that older versions of the simulator will create a
FILESYS.DMP that is the size of the file system, while newer versions of
the simulator will create a DMP file that is the same size as the flash
memory of the device that is being simulated. Newer versions of the
simulator default to a 2048 KB flash size, while older versions default to
a 1024 KB flash size.

 Tools guide — RIM 950 Wireless Handheld simulator 29

 Developer’s Guide – RIM 950 Wireless Handheld™

Flash allocation
The available flash memory (either simulated or real) is divided into four
areas:

• File system data area

• Unused area

• OS and application code area

• Fixed use area

Areas are allocated by writing an entry to a Flash allocation log, which is
a special data structure stored within the fixed use area. The log may be
completely erased using the /E command line option. Flash allocation
information will no longer exist and a default allocation will be used
until a new allocation is performed.

A new entry is added to the log whenever one or both of the /D or /A
command line options are specified. When all of the available log entries
have been used, the RIM Wireless Handheld simulator will not allow
any more entries to be written and the log is erased.

If the simulator finds no valid log entry in the DMP file, a default flash
allocation is used.

Modem simulation using a physical
modem
When simulating the radio network using a RAP modem or the RIM
Wireless Handheld, the RAP modem or wireless handheld becomes the
simulator’s radio modem. When data packet is sent by an application,
the packet is sent to the physical modem via the serial port. Packets
received by the physical modem, as well as status information, are sent
through the serial port to the simulator running on the PC, and passed
on to the applications.

When using the SDK with a physical modem, the applications are
essentially dealing with a live radio network. Dealing with a live
network requires that you have a RAP modem or the RIM Wireless
Handheld with a valid subscription and that you are operating in an area
that has radio coverage.

30 Tools guide — RIM 950 Wireless Handheld simulator

Developer’s Guide – RIM 950 Wireless Handheld™

When using a physical modem with the simulator, you cannot simulate
different coverage situations in software; you are limited by what the
modem is actually experiencing. To simulate different coverage
situations, change the position of the antenna or obstruct the antenna's
coverage. The dialog box for manually controlling radio coverage
situations is unavailable when running the simulator with a RAP
modem, as its behaviour is determined by what the actual modem
experiences on the live network.

Command line options for modem simulation using a RAP modem

/R1 /R2 /R2...
This option sets the radio serial port number. With this command
line option, the simulator simulates network traffic by
communicating to a real modem.

The simulator is able to communicate with the Allpoints wireless modem
from Megahertz and all RIM modem products for your network,
including the RIM 957, the RIM 902M OEMs, and the RIM 950 Wireless
Handheld.

Using the RIM Wireless Handheld as the modem

The RIM Wireless Handheld is an integrated embedded system and
radio modem. Although radio functionality is available to applications
running on the Wireless Handheld, this functionality is normally not
available through a serial connection. To allow the SDK’s Windows
simulator to communicate with the RIM Wireless Handheld, a special
program, SDKRADIO.DLL, must be loaded onto the RIM Wireless
Handheld to enable it to communicate radio information over the serial
port. You can load SDKRADIO.DLL with the PROGRAMMER.EXE utility
by typing:

PROGRAMMER LOAD SDKRADIO.DLL

When SDKRADIO.DLL is loaded, it automatically detects when the
simulator is attempting to contact the RIM Wireless Handheld, and
opens the COM port for communication. When not connected to the
Windows simulator, the SDKRADIO.DLL does nothing. It can coexist
with your regular applications on the RIM Wireless Handheld without
harmful effects.

When using the wireless handheld as your modem, remember that the
RIM Wireless Handheld was not designed as a high-capacity modem.

 Tools guide — RIM 950 Wireless Handheld simulator 31

 Developer’s Guide – RIM 950 Wireless Handheld™

Battery capacity, as well as other factors cause the rate of packet delivery
to be cut back after sending large amounts of data. In addition, when
sending large amounts of traffic with the RIM Wireless Handheld, its
battery life may be considerably shortened. During transmission of data
packets, for example, the RIM Wireless Handheld requires three times
more power than normal average power consumption.

Modem simulation using the file system
Unless you follow the instructions given in Modem simulation using a
physical modem, the simulator uses the file system to simulate the
modem. This allows you to test the communications functionality of an
application without actually connecting to a radio network. This
simulator offers the follow advantages over using the real network:

• No external hardware is required

• No network account is required

• Coverage situations can easily be created

• It is possible to monitor what is sent without the need for extra
tools

• It is easy to write programs to send and receive data packets as a
host side

When simulating the network using the file system instead of
communicating data packets across a live network, the modem
communicates packets across the file system. To send a data packet, the
simulator creates a file whose name indicates the destination address.
Conversely, the simulator checks for the presence of files whose name
indicate that they contain data addressed to it.

A separate control panel window, the Radio simulation control panel dialog
box, is available which allows the user to set coverage conditions.

For information specific to your network, such as the default simulation
environment, see the Radio API Developer's Guide.

Command line options for modem simulation using the file system

The simulation environment, with no command line options, will default
to simulating in the current directory, with the Radio simulation control
panel dialog box not visible upon startup.

32 Tools guide — RIM 950 Wireless Handheld simulator

Developer’s Guide – RIM 950 Wireless Handheld™

/RSIM=<address>
This option sets the address to simulate.

/RDIR=<directory>
This option sets the directory to use for the simulation. The default
directory is the current directory. Radio simulators must point at the
same directory in order to be able to communicate with each other.

Simulating email

Sending and receiving email through the MESSAGE.DLL requires a
service book entry; the only way to get a service book entry onto the
simulated RIM Wireless Handheld is to register with RIM server
software. In turn, this requires a RIM Wireless Handheld with an active
account.

The easiest way to register your simulated RIM Wireless Handheld
device is to use your RIM Wireless Handheld as a modem; you can then
register the simulated RIM Wireless Handheld with the RIM server
software.

If your application uses the Radio API calls directly, you don't need to
register the simulated RIM Wireless Handheld; registration with the
server is only required if your application uses the calls from the
Messaging API.

Radio simulation control panel dialog box

When the /RDIR=<ADDRESS> or /RSIM=<directory> options are used,
the dialog box for controlling network traffic is automatically made
visible. This dialog box can also be invoked, or brought to the
foreground, by selecting Radio simulator control panel from the Simulation
menu.

The specifics of the radio simulation control panel dialog box depend
upon the wireless network you are using. See the Radio API Developer's
Guide for information such as:

• Simulation file protocol

• Format of the files simulating data packets

• Limitations of the simulation

• Specific behaviors of the simulation

 Tools guide — RIM 950 Wireless Handheld simulator 33

 Developer’s Guide – RIM 950 Wireless Handheld™

• Guidelines for writing a host-side application to simulate the
network

This section describes the network simulation in general terms.

The control panel consists of two parts: reception and transmission. The
Reception section of the dialog box allows you to set whether or not the
modem is in coverage. The Transmission section allows you to set the
success rate for packet transmission.

Reception section

In the Reception section; you may choose to have the modem out of
coverage or in coverage; if you have the modem in coverage, you can
control the Received Signal Strength Indicator (RSSI) by sliding the
control bar back and forth. Note that the signal strength varies from -120
dBm to -50 dBm (dBm is dB with respect to milliwatts). A signal of -120
dBm is extremely weak, and the modem typically loses coverage before
reaching this number. A signal of -50 dBm is stronger than you are likely
to see on the actual network.

You may check for data packets immediately; many networks implement
a power save mode, where the network periodically indicates which
modem to send to. To conserve power, modems only turn on their
receivers during the periods they are being sent data. To simulate this,
the program only checks for packets every 10 seconds. You can force a
check for packets by selecting the button.

This window also indicates the current status and the number of data
packets received.

The following statuses are possible in the Active Status field:

State Description
Radio Off The radio is turned off.

Turning Off The radio is in the process of turning off.

Stop Reception Radio reception is stopped
(RadioStopReception has been called).

Active The modem is in coverage on the network.

34 Tools guide — RIM 950 Wireless Handheld simulator

Developer’s Guide – RIM 950 Wireless Handheld™

State Description
Checking... The radio is checking for data on a 10 second

interval, or the Check now button was
pressed.

Checking for 10 sec. The radio is checking continuously because
of a recent data packet sent or received.

Out of coverage The modem is out of coverage.

Transmission section

In the Transmission section, you may choose how frequently data
packets are transmitted successfully. You may choose to have all
transmits succeed, to be prompted for each data packet’s success (useful
for simulating very long transmit delays), or have a percentage of
packets transmit successfully, packets chosen randomly.

This section of the dialog box also contains the Transmit status field,
which indicates the status of the last or current packet that was
submitted for transmission. It can be one of the following states:

State Description
Pending The modem is currently attempting to send a

submitted packet.

Transmit Done The last packet was successfully sent to the network

Transmit Failed The last packet failed to reach the network.

Simulator command line options
The SDK environment can be configured using the following command
line arguments:

/Sn
Use Windows serial port n in place of the wireless handheld’s
physical serial port. Without this argument, no serial port will be
used, and applications will be prevented from opening a serial port.

Examples:

/S1 /S2 /S3 /S4

 Tools guide — RIM 950 Wireless Handheld simulator 35

 Developer’s Guide – RIM 950 Wireless Handheld™

/Rn
Tell the RIM Wireless Handheld simulator to use serial port n for a
RAP modem. The RAP modem is used in place of the physical RF
hardware in the simulation environment. If this argument is omitted,
no serial port is used, and simulated radio communications will not
be possible.

Examples:

/R1 /R2 /R3 /R4

/Pf
Force prompting for more applications By default, the RIM Wireless
Handheld simulator prompts for applications on startup only if no
applications are specified on the command line. Cannot be used with
/Ps.

/Ps
Suppress prompting for more applications. By default, the RIM
Wireless Handheld simulator prompts for applications on startup
only if no applications are specified on the command line. Cannot be
used with /Pf.

/Fn
Simulate n kilobytes of flash memory. If this argument is omitted,
the default size of 2048 KB is used. Note that older versions of the
simulator will have a default flash size of 1024 KB.

Examples:

/F1024 /F2048

/E
Completely erase the flash allocation log. Flash allocation
information will no longer exist and a default allocation will be used
until a new allocation is specified. This option has to be used when
all Flash allocation log entries have been used.

/Dn
Simulate n sectors of 64 KB each for file system data storage. If this
option is omitted, the previous amount is preserved, unless /E is
simultaneously specified. If /E is specified, a default amount is used.
This can simulate the result of a PROGRAMMER ALLOC command.

Example:

36 Tools guide — RIM 950 Wireless Handheld simulator

Developer’s Guide – RIM 950 Wireless Handheld™

/D15

/An
Simulate n sectors simulated flash memory (in 64 KB sectors) to be
used for OS and application code storage. If this option is omitted,
the previous amount is preserved, unless /E is simultaneously
specified. If /E is specified, a default amount is used. This can
simulate the result of a PROGRAMMER ALLOC command.

Example:

/A16

/T[flags]
Modify the stale pointer trapping behaviour of the RIM Wireless
Handheld simulator.

By default, the RIM Wireless Handheld simulator will, at various
intervals, move the location of the simulated file system on yield and
on file writes. The simulator then maps the old location as invalid
memory. Used pointers to the file system that should have been
reloaded from the handle table result in page faults. The /T option
can be followed by these symbols:

+ Turn subsequent options on

- Turn subsequent options off

W Trap on flash write

Y Trap on yield

By default, both options are turned on.

Example:

This enables a trap on flash write and disables the trap on yield:

/TW-Y

<Filename>
Any argument that does not begin with a slash is assumed to be an
application filename. Multiple application filenames may be
specified on the command line. Filenames containing spaces must be
surrounded by quotes.

Example:

 Tools guide — Program loader 37

 Developer’s Guide – RIM 950 Wireless Handheld™

In this example, APP2.DLL is assumed to reside in the working
directory

C:\dev\app1.dll app2.dll.

Debugging hints
Some tips for debugging applications using the simulator (and the RIM
Wireless Handheld itself).

• When the machine fails and requests a reset, you can often
get additional information by typing dbug. This displays the
contents of different registers.

• You may be able to get additional information on a reset
request by typing info. If the failure was caused by an
unresolved OS call, this command displays the name of the
call.

• For some reset requests, pressing the R key will cause a
reset.

• You can force a reset request with Alt-Shift-Backspace.

Program loader
The RIM 950 Wireless Handheld SDK includes a command line utility
(PROGRAMMER.EXE) to load the compiled Windows DLLs onto the
physical wireless handheld. This utility will take the same DLL that was
debugged under Windows, and perform all necessary steps to load it on
to the Wireless Handheld. The utility can also be used to manipulate
applications that are already installed on the wireless handheld.

The PROGRAMMER.EXE utility performs many of the application loader
functions of the Desktop Manager utility shipped with every RIM
Wireless Handheld; it also performs tasks more suited to programmers’
needs.

38 Tools guide — Program loader

Developer’s Guide – RIM 950 Wireless Handheld™

Program loader command line options
The PROGRAMMER.EXE utility requires a set of command line options to
denote serial port configuration, the action required, and what files are
to be manipulated. The command line template is:

PROGRAMMER [[-Pport] [-Sspeed] [-Wpassword] [command]

If no command action is given, PROGRAMMER.EXE displays help
information.

Universal command line options

The -P, -S and –W options may be given with any action.

-Pn
Use serial port n. The default is COM1.

-Sspeed
Set baud rate for the connection to the RIM Wireless Handheld. The
default is 115200 baud.

-Wpassword
Use given password, if password protection has been enabled on the
RIM Wireless Handheld.

Program loader commands

The following command actions are supported:

Command Description
LOAD [-S] [-G] [-V]
[-M] [-D] apps or
(groups)

Load applications or groups of
applications on the RIM Wireless
Handheld

ERASE [-A|-E] apps Erase applications and optionally OS
both from Wireless Handheld

DIR [-S] List applications currently on the
Wireless Handheld

HELP [command] Display help information, possibly
about command

 Tools guide — Program loader 39

 Developer’s Guide – RIM 950 Wireless Handheld™

Command Description
BATCH filename Run PROGRAMMER.EXE commands

stored in a file

VER List applications currently on the
Wireless Handheld, including version
information

MAP [-F] [-R] Display detailed flash and RAM maps

LOADFS Load file system data from a .DMP file
onto RIM Wireless Handheld

SAVEFS Save file system data from RIM
Wireless Handheld into a .DMP file

WIPE [-F | -A] Irreversibly erase applications or file
system or both from RIM Wireless
Handheld

NUKE Erase all flash on RIM Wireless
Handheld, including file system,
applications, and password

ALLOC [-E]
[-D sectors]
[-A sectors]

Moves breakpoint between
application memory and file system
memory.

LOAD command

LOAD [-S] [-G] [-V] [-M] [-D]<apps or groups>

Where

-S specifies that symbol information for all new applications should be
appended to a DEBUG.DAT file in the current directory.

-G specifies that the first application or group of applications should be
grouped with the last group found on the RIM Wireless Handheld.

-V specifies checking file versions. Normally PROGRAMMER only checks
API versions and dependencies, since developers are unlikely to
update the file information for every build.

-M specifies mappings of unresolved OS calls should be displayed. As
of version 1.7, the loader maps unresolved OS calls to an internal

40 Tools guide — Program loader

Developer’s Guide – RIM 950 Wireless Handheld™

API, RimCatastrophicAPIFailure(). In all cases, other
unresolved links fail; only unresolved OS calls can be mapped.

-D specifies that unresolved OS calls should not be mapped to
RimCatastrophicAPIFailure().

<files or groups> are one or more files or groups of files to be
loaded onto the RIM Wireless Handheld. Individual files are specified
alone. Groups of files are enclosed in parentheses, brackets, or braces.
There must be spaces surrounding the brackets, as in the example below.

Description

The LOAD command loads new applications or the application
environment onto the RIM Wireless Handheld. Any old applications by
the same name are erased. Applications can and should be grouped to
reduce wasted space on the RIM Wireless Handheld. However, if an
application is to be replaced separate from other applications on the RIM
Wireless Handheld, it should be placed in its own group.

Note

When loading or replacing the application environment
(PAGER950.BIN), it must be specified first on any Load command.

Grouping of programs

Because the flash memory can only be erased one 64 kilobyte sector at a
time, any application that is to be erased and have its space reclaimed
must not overlap with other applications in the same 64 kilobyte sector.
Grouped applications are contiguous, without regard to the 64k sector
boundaries. As such, when invalidating an application that is part of a
group, the space cannot be reclaimed without erasing other applications
as well. Applications that are not grouped each occupy one or more 64
kilobyte sectors, with the remainder of the last sector used being wasted.

Note

The ability to group programs is specific to the PROGRAMMER.EXE.
Although the desktop loader program will recognize groups already
on a RIM Wireless Handheld, it cannot load files in groups.

Examples

The following command will load the application environment and
applications onto the RIM Wireless Handheld:

 Tools guide — Program loader 41

 Developer’s Guide – RIM 950 Wireless Handheld™

PROGRAMMER LOAD PAGER950.BIN UI32.dll (Address.dll
AutoText.dll Message.dll Options.dll
Transport_RTP.dll)

The following command will load a new calculator application, grouping
it with the other applications:

PROGRAMMER LOAD -G Calculator.dll

ERASE command

ERASE –A

ERASE <application names>

Where

-A specifies that all applications and the application environment are to
be deleted.

<application names> are the names of specific applications to be
deleted.

Description

The ERASE command erases applications currently loaded on a RIM
Wireless Handheld. The names are not case sensitive and can be
obtained using the PROGRAMMER DIR command.

The space occupied by erased applications is only reclaimed when the
entire group that it resides in is erased.

Example

The following command will erase all applications on the RIM Wireless
Handheld:

PROGRAMMER ERASE -A

The following command will erase only the address book application:

PROGRAMMER ERASE ADDRESS.DLL

DIR command

DIR [-S]

42 Tools guide — Program loader

Developer’s Guide – RIM 950 Wireless Handheld™

Where

-S specifies a short listing of only the application names.

Description

The DIR command generates a listing of the applications currently
loaded on a RIM Wireless Handheld. Unless the -S option is specified,
this listing includes the names of the applications and the amount of
flash and RAM occupied by the applications. The applications are
grouped as they are grouped on the RIM Wireless Handheld.

Example

The following command will list the applications on the RIM Wireless
Handheld:

PROGRAMMER DIR

VER command

VER

Description

The VER command generates a listing of the applications currently
loaded on a RIM Wireless Handheld, including version information.
"Version information" includes release tags and build times. The
applications are grouped as they are grouped on the RIM Wireless
Handheld.

Example

The following command will list the applications on the RIM Wireless
Handheld, including release tags and build times:

PROGRAMMER VER

BATCH command

BATCH <batchfile>

Where

<batchfile> is the name of a file containing commands.

 Tools guide — Program loader 43

 Developer’s Guide – RIM 950 Wireless Handheld™

Description

The BATCH command allows multiple commands to be placed in a file
and executed with a single, short command. This command is useful
when repeatedly performing the same load process, and for overcoming
the fixed limit imposed on command lines.

The batch file may contain one or more of the LOAD, ERASE, DIR, or
BATCH commands. The results are committed to the RIM Wireless
Handheld only if all commands are successfully completed. Each line of
a batch file can be no more than 256 characters long. Single commands
can be broken into multiple commands, if you have long file names.

WIPE command

WIPE [-F | -A]

Where

-F specifies that the file system should be wiped.

-A specifies that the application area should be wiped.

If no option is specified, both the file system and application are wiped.

HELP command

HELP [<command>]

Where

<command> is the name of the command for which you want help, or the
word errors.

Description

The HELP command invokes the built-in help system. With no options a
generic help message is produced. Help for a specific command can be
obtained by specifying it as an option. Help about error messages can be
obtained by specifying the errors command.

If the output is not redirected to a file, the help system uses a built-in
paging system. Press any key at the <MORE> prompts.

44 Tools guide — Program loader

Developer’s Guide – RIM 950 Wireless Handheld™

Example

To get help on the LOAD command, type:

PROGRAMMER HELP LOAD

To get help on errors, type:

PROGRAMMER HELP ERRORS

To get a main help page, type:

PROGRAMMER HELP HELP

ALLOC command

ALLOC [-E] [-D <sectors>] [-A <sectors>]

Where

-E specifies the File Allocation Sector to be erased before writing an
entry.

-D<sectors>
specifies the new size of the file (or data) area in flash sectors; the
minimum size is 1.

-A<sectors>
specifies the new size of the OS and applications area in flash
memory.

If no options are specified, the command reports on current usage.

Description

This command writes a new entry to the Flash Allocation Log and moves
the breakpoint between File area and the OS and applications area of
memory. It is possible to move only one, but then you would have an
unused sector.

The command will only reduce the size of an area if the sectors to be
removed are completely blank. This is rarely a problem with the OS and
applications area, but may be a problem with the File area, because there
are no guarantees about placement of information.

 Tools guide — Program loader 45

 Developer’s Guide – RIM 950 Wireless Handheld™

When the File Area size is decreased, at least one blank sector must
remain within the area. Back up and pack your data before issuing the
ALLOC command.

Troubleshooting
Most error messages are self-explanatory. The following errors deserve
more discussion.

Error: Unable to connect to device

An error occurred trying to initiate communications with the RIM
Wireless Handheld. Make sure that it is connected to the computer
properly.

Error: Insufficient flash or RAM

There is not enough flash or RAM memory remaining to load a new
application. Make sure that you have erased any old applications. If you
have been erasing and loading often, you may have fragmented your
flash space. In this case, try erasing all applications and start again.
Loading applications as part of the same group will cause them to
occupy flash more efficiently.

Error: Relocation failed

It was not possible to relocate an application. This typically occurs if the
application environment (PAGER950.BIN) is not specified first in a LOAD
command. When loading or replacing the application environment, it
must always be specified first in the LOAD command.

Error: Bad load

This error occurs when a LOAD is interrupted or done improperly. This is
a serious error that requires the RIM Wireless Handheld to be reset and
its operating system reloaded. In order to reset the RIM Wireless
Handheld, insert a small pointed instrument, such as a paper clip, into
the small reset hole on the back of the RIM Wireless Handheld. To reload
the operating system, follow the example instruction in the LOAD section
on page 39 of this manual.

46 Tools guide — Program loader

Developer’s Guide – RIM 950 Wireless Handheld™

Error: Not all imports resolved

An application is requesting imports from another application that
cannot be exported by the other application. Ensure that you are loading
all applications that provide the exports that you need.

 Tools guide — DLLUtil 47

 Developer’s Guide – RIM 950 Wireless Handheld™

DLLUtil
The DLLUTIL.EXE utility provides information about DLLs as they will
be when loaded onto the RIM Wireless Handheld, similar to the output
of PROGRAMMER DIR and PROGRAMMER VER. There are two forms of the
command:

DLLUTIL SIZE [-R] files

DLLUTIL VER files

The files argument is a list of DLLs and/or OS files, and can contain
wildcards (* and ?).

In the first form (SIZE), the utility displays a dump of flash memory,
RAM, and thunk resources. With the –R switch, the utility displays the
size of the DLLs without the .reloc (DLL relocation) information
loaded. This is how programs were loaded by versions of the
PROGRAMMER.EXE utility 16 through 18. Without –R, the utility displays
the sizes as loaded by PROGRAMMER.EXE versions 20 and greater.

In the second form (VER), DLLUTIL displays version information. Beside
each valid file, it lists versions for both imported and exported APIs. It
also lists valid operating systems along with file version information.

Conversion utilities
The SDK contains three small conversion utilities intended for creating
fonts and bitmaps for the RIM Wireless Handheld.

For information about using these utilities, see chapter 3 of the OS API
Developer’s Guide.

BITMAP
The BITMAP.EXE executable creates bitmap header file from a definition
file (with a .DEF extension). The header file is then included in a
resource DLL or an application.

48 Tools guide — Conversion utilities

Developer’s Guide – RIM 950 Wireless Handheld™

The syntax is:

BITMAP definition header

The definition file format is described in the OS API Developer’s Guide,
under “Creating bitmaps.”

BMP2DEF
The BMP2DEF.EXE executable creates a definition file from an existing
bitmap (.BMP). The definition file can be turned into a RIM Wireless
Handheld bitmap header file using BITMAP.EXE.

The syntax is:

BMP2DEF bitmap definition

LCDFONTS
The LCDFONTS.EXE executable creates a font header file from a
definition file. The header file is then included in a resource DLL or an
application.

The syntax is:

LCDFONTS definition header

The definition file format is described in the OS API Developer’s Guide,
under “Creating custom fonts.”

 An overview of the system — Conversion utilities 49

 Developer’s Guide – RIM 950 Wireless Handheld™

5.An overview of the
system
This section describes parts of the RIM Wireless Handheld’s system for
developers, concentrating on the operating system.

When developing for the RIM Wireless Handheld, it’s important to
realize that the RIM Wireless Handheld has its own operating system.
Some of the features of the operating system (such as the use of flash
memory rather than a traditional file system) are based on the
requirements of a portable wireless device.

When developing applications for the RIM Wireless Handheld, you
should be aware of the following:

• A co-operative scheduler in the multitasking operating system

• Tasks and threads are used to run applications

• Because the OS is co-operative, each task must be able to yield so
that other tasks may use the CPU

• Tasks communicate using MESSAGEs

• The system uses two types of memory; this is normally hidden by
the file system handles

• The user interface is somewhat different from a traditional GUI
interface; users and applications communicate through the task
wheel, the keyboard, and the display; applications may be selected
through the application ribbon

• For some (but not most) applications, you may need to know
details of the underlying wireless network; see the Radio API
Developer's Guide for information about your network. There are
a large number of APIs provided

The rest of this chapter describes these things in slightly more detail.

50 An overview of the system — RIM co-operative scheduler

Developer’s Guide – RIM 950 Wireless Handheld™

RIM co-operative scheduler
The RIM Wireless Handheld’s operating system (OS) is designed using a
co-operative multitasking model. For more information on the operating
system and the OS functional specifications, see the RIM 950 Wireless
Handheld Operating System API Developer’s Guide.

Tasks and threads
A normal application is developed as a task or thread. In order to create
a new task:

• a PagerMain() function must be defined

• an application name must be chosen

• an application stack size must be specified

Each PagerMain() function is called during the initialization process
and is used to construct and initialize objects needed by the application.
For more information and an example, see “Coding an application” on
page 55. For more information on creating new tasks, see the RIM 950
Wireless Handheld OS API Developer’s Guide.

Task yielding
Since the operating system is a co-operative multitasking model, the
PAGERMAIN() function (and all other code) must include a task yield
function call to allow other tasks to make use of the CPU. The
application can be restarted in a number of ways:

• In response to a MESSAGE posted by a system thread (for example,
the real time clock)

• In response to a MESSAGE posted to the task by another task

• In response to a user selection through the Ribbon (selecting an
icon on the main screen)

• In response to a user selection through the Options List

 An overview of the system — MESSAGE concept 51

 Developer’s Guide – RIM 950 Wireless Handheld™

For more information on the MESSAGE posting process, see “MESSAGE
concept” below as well as the RIM 950 Wireless Handheld Operating
System API Developer’s Guide.

MESSAGE concept
The Operating System allows for inter-task communication through
posting and receiving MESSAGES. For more information, see the
RimPostMessage(), RimSendMessage(), and RimGetMessage()
functions described in the RIM 950 Wireless Handheld Operating System
API Developer’s Guide. The RimPostMessage() and
RimSendMessage() functions allow a task or system service to send a
MESSAGE to a specific task or tasks. The RimGetMessage() function
allows a task to yield control of the CPU until a MESSAGE is posted for it.

The PagerMain() function should include code to construct and
initialize the necessary application objects, followed by a message loop:
an infinite loop containing a RimGetMessage() function and code to
call the appropriate application function for each expected RIM
MESSAGE.

If you're using the UI, a message loop function is included.

Memory use
The RIM Wireless Handheld contains two types of memory: RAM and
flash. RAM memory is volatile and can be accessed directly. Flash
memory is non-volatile and can be accessed either directly or indirectly
through calls to a file system. File system handles can be assumed to
always point to the appropriate data. Flash memory can be accessed
directly as if it were RAM, but with the following two restrictions:

• Flash memory is read only memory.

• The data may move if the application code yields control of the
CPU (by either calling RimTaskYield() or
RimGetMessage(),by making a file system call, or by calling
another application that does one of these things).

For more information on file system use, see the RIM 950 Wireless
Handheld OS API Developer’s Guide.

52 An overview of the system — User interface

Developer’s Guide – RIM 950 Wireless Handheld™

User interface
The user can acquire data from the application through the RIM Wireless
Handheld’s LCD. In order to use the LCD, the application must make a
request to become the foreground task. For more information on making
an application a foreground task, see the RIM 950 Wireless Handheld OS
API Developer’s Guide. Once the task has become the foreground task, it
can use OS level calls to display data on the LCD or alternatively use
higher-level objects defined by the UI Engine.

The application can acquire data from the user through the keyboard, a
system level device that posts a MESSAGE whenever a key is pressed. The
application can acquire the information by getting that MESSAGE through
RimGetMessage().

A RIM Wireless Handheld user can manually activate an application by
selecting that application’s icon on the main screen. You create such an
icon by registering a name and a bitmap using the
RibbonRegisterApplication() function. The DEVICE_RIBBON will
then post a MESSAGE to the application’s task that can be used to invoke
the appropriate application code. For more information, see the RIM 950
Wireless Handheld Ribbon API Developer’s Guide.

The user can also activate an application manually by selecting its entry
in the Options List. You create such an entry by registering a name and a
callback function using the OptionsEntry() function. This function
calls the callback function that has access to the LCD (has the
foreground) through the Options thread. This approach should only be
used to make application parameter changes and other changes of a
limited nature.

API overview
This section provides an overview of the RIM Wireless Handheld
Application Programming Interfaces (APIs), how they are organized,
and some of the features that can be used in RIM Wireless Handheld
applications.

 An overview of the system — API overview 53

 Developer’s Guide – RIM 950 Wireless Handheld™

The following APIs are provided. All but the most trivial applications
will need to make use of the APIs described in the OS API Developer’s
guide and the User Interface Developer’s Guide.

API Description Documented in
Address Book

API
access to the database used by the
Address Book application; create,
edit, and retrieve contact
information

Address Book
API

AutoText API access to the AutoText application;
customize the editing of editable
user text

AutoText API

Database / File
system API

access file functions; the file
system on the RIM Wireless
Handheld is non-standard, to
make better use of resources

OS API

Database API access to the database functions;
define new records, and to create,
edit, and retrieve information
stored in the database

Database API

Keypad API customize the keypad; actual
keystrokes are passed as messages
from the application server

OS API

LCD API low-level display functions, screen
buffers, and string management;
use the UI APIs for dialogs,
menus, and edit classes

OS API

Messaging API access to email and other messages Messaging API

Options API responsible for controlling system-
wide programmingof the features,
such as the date, time, and
screen/keyboard settings

Ribbon API

Radio
communications

API

simplified access to radio network
and status of packet
communications

Radio API

Ribbon API register an application on the
functions list in the HOME screen

Ribbon API

54 An overview of the system — API overview

Developer’s Guide – RIM 950 Wireless Handheld™

API Description Documented in
Serial

communications
API

access and configure serial port on
the RIM Wireless Handheld

OS API

System services
API

Access to thread handling,
messaging, and task switching,
memory allocation, timers, and the
system clock

OS API

User Interface
API

Calls for high-level display of
information and handling input,
such as creating screens, menus,
and dialogs

User Interface
API

6. Building applications
This chapter describes the basics of writing an application for the RIM
Wireless Handheld.

Coding an application
This section briefly outlines the required components of an application
on the wireless handheld. The basic program structure essentially
consists of an infinite loop that receives messages from the OS, and code
to process those messages.

For every RIM Wireless Handheld application:

• Create an entry point named PagerMain()

• Register the application, providing a version string and a stack
size

• Set up a message loop

• Define version information

• Build the application as a Windows DLL target

The PagerMain entry-point function
Each RIM Wireless Handheld application must have an entry point
function named PagerMain with the following prototype:

void PagerMain(void)

The PagerMain() function has the format shown in the example on the
following page. The following guidelines will help you create the
PagerMain() function:

56 Building applications — Coding an application

Developer’s Guide – RIM 950 Wireless Handheld™

• Begin the PagerMain() function with the construction of any
permanent objects required by the application. You should avoid
accessing objects in other DLLs because until the PagerMain()
functions in these DLLs have had a chance to run, the construction
of these objects may not have occurred.

• After this local initialization phase, call RimTaskYield() to allow
the PagerMain() functions of other tasks to run.

• After RimTaskYield() is called, you can expect that the other
tasks’ permanent objects have been created. Now call those
functions that make the PagerMain() function itself known to
other tasks (for example, RibbonRegisterApplication()).

• The function can display any user interface elements that will be
visible to the user if the task is brought to the foreground.

• Finally, if your application needs to respond to MESSAGES posted
by other tasks or by system devices (such as the real time clock),
include an infinite loop containing a RimGetMessage(). The
RimGetMessage() task yields control of the CPU until a MESSAGE
is posted for the task.

For more information on MESSAGES, system devices, and task yielding,
see the RIM 950 Wireless Handheld Operating System API Developer’s
Guide.

Registering the application
RIM Wireless Handheld applications must have two variables defined
globally — the version string and the stack size.

The version string is used to register the application with the task
switcher in the operating system. The name will appear when the task
switcher is run. The definition should look like this:

char VersionPtr[] = "My Application";

The stack size is used by the system when creating the initial thread for
the application. The value should be sized according to the needs of your
application (the RimStackUsage() call will help with this). The
definition should look like this:

int AppStackSize = 4096;

 Building applications — Coding an application 57

 Developer’s Guide – RIM 950 Wireless Handheld™

Here is some example PagerMain() code for an application that makes
use of the database:

#include <Pager.h>
#include <Ribbon.h>

//Definition of bitmap registered with ribbon
#include <bitSample.h>

char VersionPtr[] = "Database Sample";

int AppStackSize = 5000;

// Function which creates the main thread

void
PagerMain(void)
{

// Yield to let other applications initialize
RimTaskYield();

// Register the application with the Ribbon
// so an icon is shown on the main screen
// The & designates 'D' as the hotkey.

RibbonRegisterApplication("&Database Sample",
NULL, 0, 0);

// Initialization complete:
// set up LCD and enter message loop
.
.
.

};

Entering the message loop
Handheld applications spend a great deal of time in the message loop.
This code block should get required application messages and perform
required operations. It is not necessary for all applications to react to all
messages.

If your application makes use of the UI engine, there are several routines
for processing specific kinds of messages (such as ProcessScreen()
and ProcessMenu()).

If you need to write a message loop, the typical structure for this loop is
a non-terminating loop with a switch statement to delegate message
processing to different functions. For example:

58 Building applications — Coding an application

Developer’s Guide – RIM 950 Wireless Handheld™

#include "Pager.h"

void PagerMain(void)
{

// initialization as in previous section
.
.
.
// Message loop
MESSAGE msg;

// perform initialization

for (;;) {
RimGetMessage(&msg);
// respond to events
switch(msg.Device) {
case DEVICE_SYSTEM:

// handle SYSTEM messages
break;

case DEVICE_TIMER:
// handle TIMER messages
break;

case DEVICE_KEYPAD:
// handle KEYPAD messages
break;

}
}

}

Note

Applications are not required to be strict state machines.

It is possible to call RimGetMessage() from anywhere in the code. For
more complex programs, every screen of your program should have its
own message loop. Messages that do not pertain to the screen, such as
radio messages, should be handled by calling a message handler, or even
a separate thread.

Becoming the foreground task
Only foreground tasks may display on the screen, so an application that
wishes to display data must first become the foreground task.

In this example, the application should be brought to the foreground if
the user activates the application by selecting an icon on the main screen.
When the user selects the icon, the OS sends a MESSAGE to the

 Building applications — Coding an application 59

 Developer’s Guide – RIM 950 Wireless Handheld™

application from the RIBBON device, with the event set to
RIBBON_GRAB_FOREGROUND. If we get a RIBBON message, we call
RimGetCurrentTaskID()for the current task handle. We bring the
application to the foreground using RimRequestForeground().

if(msg.Device == DEVICE_RIBBON) {
if(msg.Event == RIBBON_GRAB_FOREGROUND) {

// Bring this application to the foreground
// so it can use the LCD
RimRequestForeground(RimGetCurrentTaskID());

}
}

Returning from the PagerMain() call will return the user to the task
switcher, but it’s more appropriate to return to the ribbon with
RibbonShowRibbon(). This also gives up the foreground.

Using the Ribbon API
Instead of a system menu, the RIM Wireless HandheldRIM 950 Wireless
Handheld uses a simple ribbon interface to select applications. To add
your application to the ribbon:

1. Add #include <ribbon.h> to the beginning of your program.

2. Select Project > Settings and click on the Link tab. Add RIBBON.LIB
to the Object/Library Modules field before LIBC.LIB.

3. Call the RibbonRegisterApplication() function at the beginning
of PagerMain(), before the program enters the message loop. See the
RIM 950 Wireless Handheld SDK Ribbon API Developer’s Guide for
more information on this function.

Your application can return to the ribbon by calling
RibbonShowRibbon().

Handling user input
User input can be handled at the low level, but this is inefficient. We
presume you’re using the UI Engine.

60 Building applications — Coding an application

Developer’s Guide – RIM 950 Wireless Handheld™

If the user presses a key, the OS sends a MESSAGE to the application from
the KEYPAD device. If we get a KEYPAD message, we pass the MESSAGE to
the UI Engine, which returns a result code:

if(msg.Device == DEVICE_KEYPAD) {
// Let the UI process the message
result = m_ui_engine.HandleInput(message);
//Process UI Engine result

}

MESSAGEs resulting from a key being pressed on the keyboard are sent
only to the foreground task.

If the UI Engine returns CLICKED, the application should display a
menu. If the UI Engine returns UNHANDLED, the user may have pressed
the BACKSPACE key, in which case we want to return to the main screen
(RIBBON).

if(result == CLICKED) {
// Set up, display, and handle menu result

}
if(result == UNHANDLED) {

//Check for the backspace key.
//If the user pressed backspace
//we want to go to the home screen

if(message.Event == KEY_DOWN &&
message.SubMsg == KEY_BACKSPACE) {

RibbonShowRibbon();
}

}

PagerMain function example
This is a more complicated example of a PagerMain() function; it
includes task yielding, and makes use of items from other DLLs.

#include <Pager.h>
#include <Ribbon.h>

char VersionPtr[] = "Example Application";
int AppStackSize = 4096;

// Function identifying task to the OS
// These values are actually the defaults for
// a PagerMain() thread; see RimCreateThread()
// for more details

 Building applications — Coding an application 61

 Developer’s Guide – RIM 950 Wireless Handheld™

static
void
set_task_pid(void)

{
PID pid;
pid.Name = "Example Application";
pid.EnableForeground = true;
pid.Icon = NULL;
RimSetPID(&pid);

}

// Function which creates the main thread

void
PagerMain(void)

{

MESSAGE msg;

set_task_pid();
// Yield to let other applications initialize
RimTaskYield();

// Register the application with the Ribbon so an
// icon is shown on the main screen

RibbonRegisterApplication("Database Sample",
&bitmapSample, 0, 0);

// Initialization complete: set up LCD and
// enter message loop
for (;;) {

RimGetMessage(&msg);
// respond to events
switch(msg.Device) {
case DEVICE_SYSTEM:

// handle SYSTEM messages
break;

case DEVICE_TIMER:
// handle TIMER messages
break;

case DEVICE_KEYPAD:
// handle KEYPAD messages
break;

}
}

}

62 Building applications — Coding an application

Developer’s Guide – RIM 950 Wireless Handheld™

To set up a basic program structure
1. Implement a message loop:

Any application running on the device will need to handle messages
from the OS that will notify the application of key presses, radio
events, etc. The most efficient process is to do this is to use a message
loop.

The basic structure of the message loop is:

for (; ;) {
// waits until a message is given
// to the application by the OS

RimGetMessage (&message);
// processes message

}

2. An application that wishes to display data on the device’s LCD
screen must first become the foreground task.

In this example, the application should be brought to the foreground
if the user activates the application by selecting an icon on the main
screen. When the user selects the icon, the OS sends a MESSAGE to the
application from the RIBBON device, with the event set to
RIBBON_GRAB_FOREGROUND. If we get a RIBBON message, we call
RimGetCurrentTaskID() for the current task handle. We bring the
application to the foreground using RimRequestForeground().

if(message.Device == DEVICE_RIBBON) {
if(message.Event == RIBBON_GRAB_FOREGROUND) {

// Bring this application to the foreground
// so it can use the LCD
RimRequestForeground(RimGetCurrentTaskID());

}
}

3. If the user presses a key, the OS sends a MESSAGE to the application
from the KEYPAD device. If we get a KEYPAD message, we pass the
MESSAGE to the UI Engine, which returns a result code:

if(message.Device == DEVICE_KEYPAD) {
// Let the UI process the message
result = m_ui_engine.HandleInput(message);
//Process UI Engine result

}

 Building applications — Compiling RIM Wireless Handheld applications 63

 Developer’s Guide – RIM 950 Wireless Handheld™

MESSAGEs resulting from a key being pressed on the keyboard are
sent only to the foreground task.

4. If the UI Engine returns CLICKED, the application should display a
menu. If the UI Engine returns UNHANDLED, the user may have
pressed the BACKSPACE key, in which case we want to return to the
main screen (RIBBON).

if(result == CLICKED) {
// Set up, display, and handle menu result
}

if(result == UNHANDLED) {
//Check for the backspace key. If the user
// pressed backspace we want to go to the home
// screen

if(message.Event == KEY_DOWN &&
message.SubMsg == KEY_BACKSPACE) {

RibbonShowRibbon();
}

}

Example programs
Source code for sample applications is available in the SAMPLES
directory where the SDK was installed.

You may want to read the Messenger Developer’s Guide, which
describes a sample application that makes use of the OS and database
APIs.

Compiling RIM Wireless
Handheld applications
You can create a RIM Wireless Handheld application by recompiling an
application created for an earlier version of the wireless handheld.

1. Set up a Microsoft Developer Studio project (version 5.0 or later) as
described above.

2. Select Project > Add to Project > Files…. Select all the source and
header files that should be included in the project.

64 Building applications — Installing the application

Developer’s Guide – RIM 950 Wireless Handheld™

You should now be able to compile and debug your application using
the RIM 950 Wireless Handheld SDK.

Installing the application
There are two utilities available to install the application on a RIM
Wireless Handheld, the PROGRAMMER.EXE utility and the Desktop
Manager software shipped with every RIM Wireless Handheld.
Installing the application with PROGRAMMER.EXE has been covered (see
page 39 for a description of the LOAD command action). Note that you
cannot run the Desktop Manager and PROGRAMMER.EXE at the same
time.

Normally, installation of a distributed application is done using the
Application Loader in the Desktop Manager software. To make your
application visible to the Desktop Manager software, you need to set
certain registry keys; the Desktop Manager looks for those keys and
creates an entry for your application.

Depending upon your distribution method, you can either set the keys
directly or you can create an application loader information file with a
.ALI file extension.

Registry keys for installation
The registry keys are installed in the hive under
HKEY_LOCAL_MACHINE/SOFTWARE/Research In Motion/Desktop
Software/Loader/Applications/DisplayName. Note that the Display Name
is both the name of the key and a value in the key.

Value Name Value Type Meaning

Description REG_SZ The text displayed in the
description field of the Application
Loader when one of the items in
the app list is selected.
Corresponds to the
<DESCRIPTION> tag of the ALI
file.

DisplayName REG_SZ The name of the app as displayed
in the Application Loader.

 Building applications — Installing the application 65

 Developer’s Guide – RIM 950 Wireless Handheld™

Value Name Value Type Meaning
Corresponds to the
<DISPLAY_NAME> tag of the ALI
file.

Flags REG_DWORD See below. Generally 0x04 is the
best value. Inferred from the
optional <SCREEN_SIZE> tag of
the ALI files.

Path REG_SZ Fully qualified path to the actual
app DLL. In ALI files, it is inferred
from the pathname to the ALI file
by the Application Loader.

Version REG_DWORD Indicates version information
associated with the app DLL. This
isn't used directly by the loader,
but is required. Corresponds to the
<VERSION> tag of the ALI file.

The Flags is a bitset indicating information about this particular
application DLL:

Name Mask Meaning
Reserved1 0x01 Reserved; must be zero

Reserved2 0x02 Reserved; must be zero

Reserved3 0x04 Reserved; must be one

SMALLSCREEN 0x08 Indicates that this app is intended for
use only on the pager-sized RIM
Wireless Handhelds

BIGSCREEN 0x10 Indicates that this app is intended for
use only on the palm-sized RIM
Wireless Handhelds

66 Building applications — Installing the application

Developer’s Guide – RIM 950 Wireless Handheld™

ALI file format
The ALI file is read by the Application Loader, which then sets
appropriate registry keys. From that point on, your application is known
to the loader.

The ALI file is a text file that contains three lines. The format is:

<DESCRIPTION>Description of the application
<DISPLAY_NAME>Name to be displayed
<VERSION>Version number

<SCREEN_SIZE>Model (RIM 950™ or RIM 957™) RIM
Wireless Handheld — optional line

The angle brackets (<>) around the key names are required.

<DESCRIPTION>
A brief description of the application that is displayed in the
Description pane of the application loader. The value is an arbitrary
text string.

<DISPLAY_NAME>
The name for the application, displayed with a checkbox in the
selection pane of the application loader. The list of applications is
sorted by display name. The value is an arbitrary text string. This
value will also be used for the registry key name.

<VERSION>
A version number for the application. A value is required but is
currently ignored by the application loader. The value must be in
numeric format.

<SCREEN_SIZE>
This tag is optional, and represents the model of the RIM Wireless
Handheld. Valid arguments for this tag are LARGE, SMALL, and ANY.
Respectively, these set the BIGSCREEN bit, SMALLSCREEN bits, or no
extra bits.

The ALI file must be in the same directory as the DLL it describes, and it
must have the same basename as the DLL it describes. For example, the
API file for MEMOPAD.DLL is named MEMOPAD.ALI.

 Building applications — Installing the application 67

 Developer’s Guide – RIM 950 Wireless Handheld™

Application loader notes
You should be aware of the following when packaging applications for
the Application Loader for the RIM Wireless Handheld.

Each application requires an ALI file or registry settings

The ALI file contains information used by the loader to add an
application to its list of available applications. The ALI file must have the
same basename as the DLL it describes and it must be in the same
directory as the DLL it describes. See above for the format. The
Application Loader uses the contents of the ALI file to set registry
entries. You may choose to set the registry entries directly.

Each application must have a unique name

Neither the application loader nor the RIM Wireless Handheld will allow
two applications with the same name. Each application must have a
unique name. This is not normally a problem; the internal DLL name is
used for comparison purposes. (The internal DLL name is the name of
the output file passed to the linker when creating the DLL.)

The application name is compiled into the DLL

Simply renaming the DLL with Windows Explorer will not allow you to
have two copies of the MemoPad (for example) on your RIM Wireless
Handheld. The check is based on the internal DLL name. If for some
reason you want to have to different versions of the same application on
your device, you will need to adjust your build process.

Appendix
C library compatibility for RIM
Wireless Handheld
applications
Only some functions within the compiler C library are safe to call from
the RIM Wireless Handheld environment. The following table
summarizes the information. There are equivalent functions for the
groups marked “No”—see the list afterwards.

Compatible with RIM Wireless
Handheld? Function

Groups Yes No Some
Argument access macros �

Buffer access macros �
Byte classification �

Character classification �
Data conversion �

Debug �
Directory control �

Error and exception handling �
File handling �
Floating point �
Input/output �

Locale dependent �
Memory allocation �

Process and environment control �
Searching and sorting �
String manipulation �

System calls �
Time �

70 Appendix — C library compatibility for RIM Wireless Handheld applications

Developer’s Guide – RIM 950 Wireless Handheld™

Functions that are compatible
Argument access macros

This set of functions is compatible with the RIM Wireless Handheld
environment. This includes the macros va_arg, va_start, and va_end.

Buffer manipulation functions

This set of functions is compatible with the RIM Wireless Handheld
environment. This includes memccpy, memchr, memcmp, memcpy,
_memicmp, memmove, memset, and _swap.

Data conversion functions

The following data conversion functions may be used in a RIM Wireless
Handheld application: abs, atoi, _atoi64, atol, _itoa, _i64toa,
labs, _ltoa, strtol, strtoul, __toascii, tolower, _tolower,
toupper, _toupper, and _ultoa.

Searching and sorting functions

The library functions bsearch, _lfind, _lsearch, and qsort should
work in the RIM Wireless Handheld environment. Testing for these
functions has not been completed at this time.

Functions that are not compatible
Byte classification (multibyte) functions

The RIM Wireless Handheld does not support multibyte characters.

Character classification functions

Since the RIM Wireless Handheld does not support multibyte or wide
characters, multibyte or wide character functions are also not supported.
Many of the other isxxx() functions and macros are locale dependent.
Different locales have different sets of upper and lower case characters.

Debug functions

The RIM Wireless Handheld does not support the compiler library
debugging support functions. Other functions are provided to support
debugging of wireless handheld applications. For example, short

 Appendix — C library compatibility for RIM Wireless Handheld applications 71

 Developer’s Guide – RIM 950 Wireless Handheld™

debugging messages can be output to the debug output window when
running MS Developer Studio by calling RimDebugPrintf.

Directory control functions

The RIM Wireless Handheld file system is different from those used on
desktop systems. As a result, the directory control functions are not
supported by the RIM Wireless Handheld.

Error and exception handling functions

The RIM Wireless Handheld environment does not support exception
handling. Serious failures, such as page faults, are handled by the system
function RimCatastrophicFailure, which may be called by
application code when an unrecoverable error is detected.

File handling functions

The RIM Wireless Handheld file system is different from those used on
desktop systems. As a result, the file handling functions are not
supported by the RIM Wireless Handheld.

Floating-point functions

Since the RIM Wireless Handheld has no floating point co-processor and
does not support application handling of traps and exceptions, floating
point functions may not be used on the RIM Wireless Handheld, unless
all of the floating points are implemented by emulation without calls to
the operating system. However, the following functions are incorrectly
classified as floating point functions, and may be used without difficulty:
div, labs, ldiv, _lrotl, _lrotr, _max, _min, rand, _rotl, and _rotr.

Input and output functions

Any stream, file, or console input/output functions are not compatible
with the RIM Wireless Handheld environment. The RIM Wireless
Handheld environment provides different mechanisms for keyboard
input, LCD output, and file system access. Because of the way they are
implemented in the compiler library, this category also includes
sprintf and sscanf. These may not be used in a RIM Wireless
Handheld application. Use RimSprintf or RimVSprintf instead of
sprintf.

The port I/O functions, such as inp and outp, will not cause an error
during compilation, linking, or loading. However, because RIM Wireless

72 Appendix — C library compatibility for RIM Wireless Handheld applications

Developer’s Guide – RIM 950 Wireless Handheld™

Handheld applications run in a protected environment, calling these
functions will cause a protection fault at run time.

Locale dependent functions

The RIM Wireless Handheld environment does not support locales,
multibyte characters, or wide characters. However, it is useful to have
many of the locale dependent functions compatible. These functions
were in the C library before the setlocale function.

Memory allocation functions

The standard C memory allocation functions may not be used in the RIM
Wireless Handheld environment. Use RimMalloc, RimRealloc, and
RimFree instead.

The global C++ operators new and delete may be used. They are
translated into calls to RimMalloc and RimFree respectively. Operator
new differs from the standard one in that, if there is insufficient memory
to perform the allocation, it returns a NULL pointer rather than throwing
an exception.

Process and environment control functions

Because the process model of the RIM Wireless Handheld environment
is quite different from that of desktop systems, the compiler C library
process and environment control functions are not applicable.

The functions setjmp and longjmp are also in this class. They are not
available because the library implementations make system calls in order
to perform stack unwinding. You could write a version of these
functions that would work on the RIM Wireless Handheld, if it is
acceptable not to call the distracters of C++ stack objects between the
setjmp and the longjmp.

String manipulation functions

Many of the string manipulation functions are locale dependent or
require the use of malloc. These functions are, therefore, not supported
by the RIM Wireless Handheld environment.

System call functions

Windows system call functions may not be used in the RIM Wireless
Handheld environment. Because of the way the RIM Wireless Handheld

 Appendix — C library compatibility for RIM Wireless Handheld applications 73

 Developer’s Guide – RIM 950 Wireless Handheld™

operating system allocates application stacks, Windows functions are not
safe to call even when running on the simulator.

Time functions

The RIM Wireless Handheld operating system represents time
differently from desktop systems. As a result, time functions are not
compatible with the RIM Wireless Handheld environment.

Index
about this guide, 6–7
ALI file, 64
alt key, simulating, 24–25
API

generic application, See
generic application

overview, 52–54
application loader, 64

registry keys, 64
applications

compiling RIM Wireless
Handheld, 63–67

restarting, 50
backlighting, 25
BITMAP.EXE utility, 47
BMP2DEF.EXE utility, 48
building applications, 54–67
C library compatibility for RIM

Wireless Handheld
applications, 69

coding applications, 62–63
compiling RIM Wireless

Handheld applications, 63–67
configuring MS Developer

Studio, 12–13
ctrl key, 25
development environment

configuring, 12–13
DLL, 11, 55
DLLUTIL.EXE utility, 47
examples

generic application, 62–63
source code, 63

exception handling, 71
filename, 36
flash file system, 28
flash memory, 51
flash simulation file, 28
flash simulation files, 27

generic application
entering the message loop,

57–58
entry point function, 55
example programs, 63
registering the application,

55–57
header files

Pager.h, 57
Pre20.h, 16
ribbon.h, 59

HKEY_LOCAL_MACHINE/SO
FTWARE/Research In
Motion/Desktop
Software/Loader/Applicatio
ns, 64

icons, creating, 52
information sources

API Developer’s Guides, 52–
54

Operating System API
Developer’s Guide, 50

Ribbon API Guide, 52
installing the SDK, 9–13
interface, user, 52
introduction, 5
keypad, 24
launching the simulator, 20, 21
LCD, 26
LCDFONTS.EXE utility, 48
loading simulator applications,

22
macros

argument access, 70
LCD constants, 16
locale dependent, 70

memory
flash, 51
RAM, 51

76 Index

Developer’s Guide – RIM 950 Wireless Handheld™

use, 51
message loops

and ribbon, 59
definition, 62
entering the message loop,

57–58
MESSAGEs

concept, 51
mode

pager, 25
pc, 25

modem, 35
radio simulation control

panel dialog box, 32
simulating using a physical

modem, 29
simulating using the file

system, 31
simulation with RAP modem,

30
using file system

command line options, 31
packet transmission, 33, 34
radio simulation control

panel dialog box, 32
using the pager as a modem,

30
MS Developer Studio

configuring, 12–13
description, 11

MS Intellimouse, 26
MS Visual C++ 5.0, 12
multitasking, 5
network

description, 5–6
opening

multiple files in the simulator,
21

simulator, 20, 21
Operating System API

Developer’s Guide, 50
OS library

RIMOS.LIB, 15

OSLOADER.EXE, 21
packet transmission, 33, 34
pager mode, 25
PAGER950.LIB, 15
PagerMain function

example, 60
tasks and threads, 50

pc mode, 25
processor, 5
program loader, 69–73

batch command, 42–43, 42–43
command line options, 38–44
dir command, 41–42
erase command, 41
load command, 39–41
troubleshooting, 44–46
ver command, 42
wipe command, 43–44

prompting for applications, 35
radio simulation control panel

dialog box, 32
packet transmission section,

33, 34
RAM, 51
RAP (radio access protocol), See

modem
release notes, 15

Message, 16
OS, 16
recompiling, 15
simulator, 16

Research In Motion, 6
restarting applications, 50
ribbon API

using, 59
Ribbon API Guide, 52
ribbon icons, See icons, creating
RIM co-operative scheduler, 50
RIM Wireless Handheld

activating applications, 52
keyboard, 52
LCD, 52

 Index 77

 Developer’s Guide – RIM 950 Wireless Handheld™

RIM Wireless Handheld
simulator, See simulator

running the simulator, 19–20
SDK

components, 6–7
description, 5
installing, 9–13
multitasking, 5
processor, 5

serial input/output, 27
serial port, 34
shift key

simulator, 25
shortcuts for starting the

simulator, 20–23
simulating

battery environment, 26–27
holster environment, 26–27
serial input/output, 27

simulation menu
battery, 26–27
holster, 26–27

simulator, 16, 19–37
alt key, 24–25
backlighting, 25
command line options, 27–37
command line options for

RAP modem, 30
command line options using

the file system, 31
keypad, 24
launching, 20, 21
LCD, 26

loading applications, 22
opening, 20, 21
opening multiple files, 21
pager mode, 25
pc mode, 25
running, 19–20
shift key, 25
simulating using a physical

modem, 29
trackwheel, 25
using, 23–27
using the shortcuts, 20–23

standard C library
compatible functions, 70

system overview, 49
tasks

application development, 50
yielding, 50

threads, 50
tools guide, 19–48
trackwheel, simulating, 25
user interface, 52
using

simulator, 23–27
simulator shortcuts, 20–23
the ribbon API, 59

utilities
bitmap, 47
bmp2def, 48
conversion, 47–48
dllutil, 47
lcdfonts, 48

Free Manuals Download Website
http://myh66.com

http://usermanuals.us
http://www.somanuals.com

http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com

http://aubethermostatmanual.com
Golf course search by state

http://golfingnear.com
Email search by domain

http://emailbydomain.com
Auto manuals search

http://auto.somanuals.com
TV manuals search

http://tv.somanuals.com

http://myh66.com/
http://usermanuals.us/
http://www.somanuals.com/
http://www.4manuals.cc/
http://www.manual-lib.com/
http://www.404manual.com/
http://www.luxmanual.com/
http://aubethermostatmanual.com/
http://www.golfingnear.com/
http://emailbydomain.com/
http://auto.somanuals.com/
http://tv.somanuals.com/

	Developer’s Guide
	SDK User’s Guide
	Contents
	Introduction
	About the SDK
	About the network
	About Research In Motion
	About this guide

	Installing the SDK
	To install the SDK
	To configure Microsoft Developer Studio

	Release notes
	Recompiling your applications
	Message
	OS
	New simulator
	Ribbon changes
	Address Book changes

	Tools guide
	RIM 950 Wireless Handheld simulator
	Running the simulator
	Run the simulator using shortcuts
	Running the simulator from the command line
	Loading applications

	Using the simulator
	Keypad
	PC mode and Pager mode
	Enabling backlighting
	Trackwheel
	LCD
	Simulation menu

	Simulating serial I/O
	Flash simulation files
	Notes on older simulator versions

	Flash allocation
	Modem simulation using a physical modem
	Command line options for modem simulation using a RAP modem
	Using the RIM Wireless Handheld as the modem

	Modem simulation using the file system
	Command line options for modem simulation using the file system
	Simulating email
	Radio simulation control panel dialog box

	Simulator command line options
	Debugging hints

	Program loader
	Program loader command line options
	Universal command line options
	Program loader commands
	LOAD command
	ERASE command
	DIR command
	VER command
	BATCH command
	WIPE command
	HELP command
	ALLOC command

	Troubleshooting

	DLLUtil
	Conversion utilities
	BITMAP
	BMP2DEF
	LCDFONTS

	An overview of the system
	RIM co-operative scheduler
	Tasks and threads
	Task yielding
	MESSAGE concept
	Memory use
	User interface
	API overview

	Building applications
	Coding an application
	The PagerMain entry-point function
	Registering the application
	Entering the message loop
	Becoming the foreground task
	Using the Ribbon API
	Handling user input
	PagerMain function example
	To set up a basic program structure
	Example programs

	Compiling RIM Wireless Handheld applications
	Installing the application
	Registry keys for installation
	ALI file format
	Application loader notes

	Appendix
	C library compatibility for RIM Wireless Handheld applications
	Functions that are compatible
	Functions that are not compatible

	Index
	Other SDK Documents
	Operating System API
	Radio API
	UI Engine API
	Database API
	Extended API
	Address Book API
	AutoText API
	Messaging API
	Ribbon API
	Sample application: Messenger

